Predictive Inference Post Model
نویسندگان
چکیده
We give a finite-sample analysis of predictive inference procedures after model selection in regression with random design. The analysis is focused on a statistically challenging scenario where the number of potentially important explanatory variables can be infinite, where no regularity conditions are imposed on unknown parameters, where the number of explanatory variables in a “good” model can be of the same order as sample size and where the number of candidate models can be of larger order than sample size. The performance of inference procedures is evaluated conditional on the training sample. Under weak conditions on only the number of candidate models and on their complexity, and uniformly over all data-generating processes under consideration, we show that a certain prediction interval is approximately valid and short with high probability in finite samples, in the sense that its actual coverage probability is close to the nominal one and in the sense that its length is close to the length of an infeasible interval that is constructed by actually knowing the “best” candidate model. Similar results are shown to hold for predictive inference procedures other than prediction intervals like, for example, tests of whether a future response will lie above or below a given threshold.
منابع مشابه
ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM AND STEPWISE REGRESSION FOR COMPRESSIVE STRENGTH ASSESSMENT OF CONCRETE CONTAINING METAKAOLIN
In the current study two methods are evaluated for predicting the compressive strength of concrete containing metakaolin. Adaptive neuro-fuzzy inference system (ANFIS) model and stepwise regression (SR) model are developed as a reliable modeling method for simulating and predicting the compressive strength of concrete containing metakaolin at the different ages. The required data in training an...
متن کاملA Multiple Adaptive Neuro-Fuzzy Inference System for Predicting ERP Implementation Success
The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led ...
متن کاملThe experience of agency: an interplay between prediction and postdiction
The experience of agency, i.e., the registration that I am the initiator of my actions, is a basic and constant underpinning of our interaction with the world. Whereas several accounts have underlined predictive processes as the central mechanism (e.g., the comparator model by C. Frith), others emphasized postdictive inferences (e.g., post-hoc inference account by D. Wegner). Based on increasin...
متن کاملProfile Predictive Inference
Bayesian predictive inference analyzes a dataset to make predictions about new observations. When a model does not match the data, predictive accuracy su ers. We develop population empirical Bayes ( ), a hierarchical framework that explicitly models the empirical population distribution as part of Bayesian analysis. We introduce a new concept, the latent dataset, as a hierarchical variable and ...
متن کاملAn Artificial Language Evaluation of Distributional Semantic Models
Recent studies of distributional semantic models have set up a competition between word embeddings obtained from predictive neural networks and word vectors obtained from count-based models. This paper is an attempt to reveal the underlying contribution of additional training data and post-processing steps on each type of model in word similarity and relatedness inference tasks. We do so by des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009